We report on the synthesis, MS, UV-vis, NMR, HPLC and electrochemical characterization of magnesium sulfanyl porphyrazine with 2-[2-(4-nitrophenoxy)ethoxy]ethylsulfanyl substituents in the periphery. The electrochemical properties of novel macrocycle were studied by cyclic voltammetry and differential pulse voltammetry in non-aqueous electrolyte. The experimental data indicated the occurrence of clearly defined four redox couples corresponded to one-electron reactions of the π-conjugated porphyrazine ring and substituents in the periphery. Multiwalled carbon nanotube/sulfanyl porphyrazine hybrids deposited on a glassy carbon electrode allowed for the evaluation of the effect of nitro peripheral groups on the electrochemical properties. The electrochemical behavior of immobilized nitro porphyrazine was consistent with the reduction mechanism for the various arylnitro compounds in aqueous media, with two processes characteristic of the redox transitions of the arylnitro group to the corresponding arylhydroxylamine and/or arylhydroxylamine–arylnitroso groups.