Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological features

Publish Year: 2015
Publisher:  Thin Solid Films, 2015, 589, 303–308
See this publication
TiO2 thin films were grown on highly-doped p-Si (100) macro- and mesoporous structures by atomic layer deposition (ALD) using TiCl4 and deionized water as precursors at 300 °C. The crystalline structure, chemical composition, and morphology of the deposited films and initial silicon nanostructures were investigated by scanning electron microscopy, transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, micro-Raman spectroscopy and X-ray diffraction (XRD). The mean size of TiO2 crystallites was determined by TEM, XRD and Raman spectroscopy. It was shown that the mean crystallite size and the crystallinity of the TiO2 are influenced dramatically by the morphology of the porous silicon, with the mesoporous silicon resulting in a much finer grain size and amorphous structure than the macroporous silicon having a partially crystal anatase phase. A simple model of the ALD layer growth inside the pores was presented.

Contact | Contact database | RSS | Login
© 2025 CENTRUM NANOBIOMEDYCZNE UAM | ul. Wszechnicy Piastowskiej 3, PL 61614 Poznań, Poland | tel.+48 61 829 67 04.