Oxidation kinetics of thin and ultra-thin Fe films

Publish Year: 2015
Publisher:  Acta Physica Polonica A, 2015, 127, 549-551
See this publication
A. Marczyńska, J. Skoryna, M. Lewandowski, L. Smardz
We have studied oxidation kinetics of Fe thin films under atmospheric conditions using the fact that metallic iron is a ferromagnet but ultrathin natural iron oxides are practically nonmagnetic at room temperature. As a consequence, oxidation is associated with a loss in ferromagnetism. Fe thin films were deposited onto 1.5 nm V thick buffer layer using UHV magnetron sputtering. As a substrate we have used Si(100) wafers with an oxidised surface. Results show that all samples with an initial Fe thickness greater than 6 nm oxidize practically instantaneously, whereby a constant amount of 2.5 nm of metal is transformed into oxides. For iron thickness lower than 6 nm the time constant for oxidation increases considerably reaching a value of 30 days for the initial Fe thickness equal to 4 nm.

Contact | Contact database | RSS | Login
© 2024 CENTRUM NANOBIOMEDYCZNE UAM | ul. Wszechnicy Piastowskiej 3, PL 61614 Poznań, Poland | tel.+48 61 829 67 04.