One and two-phonon Raman scattering from nanostructured silicon

Publish Year: 2015
Publisher:  Optik, 2015, 126, 1650–1655
See this publication
I. Iatsunskyi, G. Nowaczyk, S. Jurga, V. Fedorenko, M. Pavlenko, V. Smyntyna
Raman scattering from highly/low resistive nanostructured silicon films prepared by metal-assisted chemical etching was investigated. Raman spectrum of obtained silicon nanostructures was measured. Interpretation of observed one and two-phonon Raman peaks are presented. First-order Raman peak has a redshift and broadening. This phenomenon is analyzed in the framework of the phonon confinement model taking into account mechanical stress effects. Second-order Raman peaks were found to be shifted and broadened in comparison to those in the bulk silicon. The peak shift and broadening of two-phonon Raman scattering relates to phonon confinement and disorder. A broad Raman peak between 900 and 1100 cm−1 corresponds to superposition of three transverse optical phonons ∼2TO (X), 2TO (W) and 2TO (L). Influence of excitation wavelength on intensity redistribution of two-phonon Raman scattering components (2TO) is demonstrated and preliminary theoretical explanation of this observation is presented.

Contact | Contact database | RSS | Login
© 2024 CENTRUM NANOBIOMEDYCZNE UAM | ul. Wszechnicy Piastowskiej 3, PL 61614 Poznań, Poland | tel.+48 61 829 67 04.