Nanotechnology is emerging as a new interdisciplinary field combining biology, chemistry, physics and material science. The review describes recent developments in the synthesis, modification and practical applications of nanoparticles (NPs). Moreover, this work describes the methods of NPs incorporation in various matrices. Taking advantages of the specific characteristics of NPs such as high surface to volume ratio, homogeneous particles size distribution, possibility of facile surface modification, good stability, and the ease of preparation, these materials offer new solutions in the fields of pharmacy, dentistry, medicine, biology, and material science. Size, shape, size distribution and surface decoration of NPs are the key factors determining their specific properties. Due to the strong antibacterial properties and low toxicity towards mammalian cells of some NPs they have been successfully applied in a wide range of areas including wound dressing, protective clothing, new nanomedicines, antibacterial surfaces, water treatment, food preservation, and cosmetics as biocidal and disinfecting agents. Suggested mechanism of NPs antibacterial activity is also presented.