For 1-[3-fluoro-4-(1-methylheptyloxycarbonyl)phenyl]-2-[4-2,2,3,3,4,4,4-heptafluorobutoxybutoxy)biphenyl-4-yl]ethane (1F7), built of chiral molecules, results of dielectric measurements of liquid-crystalline and solid phases are presented. Rich polymorphism of liquid-crystalline (SmC*, SmC*A and SmI*A) phases as well as of solid (Cr1 and Cr2) phases were observed down to –130°C. At a frequency range from 0.1 Hz to 3 MHz, the relaxation processes were detected in ferroelectric SmC*, antiferroelectric SmC*A and highly ordered SmI*A smectic phases. The mechanism of complex dynamics (moleculear and collective) was identified with the help of the bias field. Vitrification of conformationally disordered crystal phase Cr2 was found in accordance with calorimetric observations.